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ABSTRACT. The present study focuses on developing a cost 
function for pump-pipelines system with emitters randomly 
distributed along the pipelines. The objective function is based on 
the capital cost of the piping system, pumps and the cost of energy 
required to operate the system. Employing the least annual cost 
principle to obtain the optimal diameter of each pipe leads to a 
nonlinear system of equations. A solution procedure based on an 
iterative scheme is proposed and examined for three case studies. 
The first case is a three-parallel pipeline system with 12 emitters. 
The second case is a two-pipeline system of the actual irrigation 
network at King Abdulaziz University Campus, with 26 emitters. 
A single pipeline 5.8-km long with three draw-off points is the 
third case study. 

 
 

1.  Introduction 
 

The selection of a pipeline size to meet a specific criterion, such as the minimum 
annual expenses, has been extensively treated by Nolte [1]. For the least annual 
cost (LAC) as the selection criteria the length of the pipeline does not effect the 
optimum pipe diameter. The analysis could be performed only for a unit length. 
This result is important for pipelines transporting fluids between two fixed 
stations without any fluid extraction or inflow in-between. Hathoot[2]  
reconsidered the single pipeline optimization problem with several boosting 
pumps at equal distances. Analytical expressions were obtained for the minimum 
annual cost and optimum pipe diameter.  Ferreira and Vidal [3] extended the 
conditions of Hathoot [2] to include the distance between boosting stations and the 
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pipeline wall thickness as decision parameters. An economic analysis of the 
pump-pipeline system was presented by Kabir [4], which was oriented to 
sensitivity analysis of the annual cost to variations in interest rate, bonds issue and 
construction cost. 

  
 The use of multi-criterion optimization methods for pipe network 

analysis has been reviewed by Stephenson [5]. This extensive study showed that 
the dynamic programming schemes are suitable for pipe size selection of main 
and trunk pipelines.  Transportation programming is convenient for cases in 
which the pipe routes and size are to be optimally selected. Because of the 
complex network analysis a special network linear programming (NWLP) 
algorithm has been developed. Comparison between the NWLP and the ordinary 
linear programming routines, Kuczera [6] showed that the NWLP method requires 
less time as compared to the LP algorithms. With the advances in optimization 
search methods, network analysis has been extended beyond the classical problem 
of selecting size of pipes, pumps and routes (Cembrowicz et al [7]) to include 
parameters of different interest. Management of irrigation systems (Srinivasan 
and Guimaraes [8], Eduardo and Marino [9] and Mohtar et al [10]) where the effects 
of land topography, irrigation method and land allocation is included. 
Maximization of land yield, profit and/or management of wastewater reuse 
(Afshar and Miguel [11]) are just other examples. Application of the genetic 
algorithms for pipe network optimization is in progress where it may provide 
some advantages over the classical linear, dynamic and/or nonlinear programming 
methods (Dandy et al [12] and Simpson et al [13]). 

 
The present work is directed to the study of pump-branching pipes 

distribution system with arbitrary located draw-off stations for optimum 
selection of the pipes diameters on the basis of minimum cost function. 
 

2. Mathematical Model 
 

The system considered is a single pumping station with a system of n 
parallel pipelines. Each of the pipelines, i, has a number of emitters mi, 
Fig.1. The emitters may be spaced at equal distances as the case of 
irrigation lateral system. However, for generality of the analysis the emitters 
are randomly spaced at li1, li2,…., lij, …., lim . The flow rate through any 
pipeline, i, is Qi, which is distributed at the draw-off or extraction stations (i, j) 
at a certain ratios Xij of the branch flow rate. Apply the mass conservation 
principle, assuming constant fluid density, gives the total flow rate entering the 
system as: 
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where Xij is the fraction of flow rate drawn off at emitter ij. The diameter of a 
pipeline segment between two emitters i,j and i, j+1 (denoted by Dij) represents 
one of the control parameters that affect the cost of the system. The second 
control variable is the cost of energy required to achieve the operation 
conditions. The cost of energy is a function of the size of the pump and the 
operation time of the system. The total annual cost (TAC) presents the 
objective function to be minimized, and is determined from fixed and operation 
costs in the following: 
 
 

 
Figure 1. Schematic of a pump-branching pipeline distribution system 

 
 
2.1 Pipelines and pump cost 

 
 The cost of pipes is usually related to the diameters and the materials. 
Cost data in SR/m for PVC pipes and galvanized steel pipes have been 
correlated, based on prices of the local market, to the following form 
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 a = 10 b = 1 for galvanized steel up to 4" dia.  
 a = 2.36 b = 1.09 for PVC pipes 
 
D is the nominal diameter in inches, schedule 40 for steel pipes. Installation of 
the pipelines adds to the cost of purchasing the pipes, if Cm is the installation 
cost per unit length then,  the total piping installation cost is: 
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Usually the cost of pumps is related to the power of the pump motor, which is a 
function of the flow rate at maximum system head Hfi. Making use of Eqs.2 
and 3 the cost of the system can be written as, 
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where pα  is a constant determined by fitting the available market data on 
pumps. 
 
2.2  Operation cost 
 
 The effective part of a network operation cost is the cost of energy 
consumed for pumping Qt against a system friction and other losses (valves, 
expansion, contraction, elbows…), Hi. Noting that Hi for all branches is a fixed 
value (parallel flow pipes).  The head loss is;  
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where Yi is a characteristic group for branch i, G is a constant = ( )24/2 πg and 
f is assumed constant independent on Reynolds number. 
For any two parallel pipelines i and k the equal pressure drop condition gives 
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Combining Eqs. 1 and 6 gives the total flow rate Qt passing through the system 
as: 
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Equation 7 gives a relation to determine the flow at any branch Qi as 
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The cost of energy consumed over a period of τ (hours) is 
 

 τ
η

fit
ee

HwQ
cC =  (9) 

where ce is the specific cost of energy, SR/kWh. 
Substituting for Hfi and Qi from Eqs.5 and 8 into Eq.9 and adding the fixed cost 
Cpp to that of the energy Ce gives the objective function as; 
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where C is a parameter depends upon the cost of electricity, annual period of 
operation (8760 h maximum) and pump efficiency, a fixed value for C is 
assumed for this analysis, r is the fixed charge rate on money (0.14). 
The objective function Z presents the total annual cost, to be minimized for the 
state variables Dij. Therefore; 
 
 ( )o

ijDfZ =min  (11) 
where the superscript o  denotes optimal value for a pipe segment ij. The only 
constraint for this system is to get diameters within the practical dimensions of 
pipes, i.e. 
 
 maxmin DDD o

ij ≤≤  (12) 
 
 

3. Scheme of solution 
  
The least annual cost principle gives the condition for minimum Z, as, 
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applying the principle of partial differentiation Eqs.10 and 13 give 
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Equation 14 is a set (ij) of a nonlinear-coupled system of equations, solution of 
that gives the values for o

ijD . It can be simplified by assuming b = 1this gives 
the ratio between two optimal pipes o

ijD  to that o
kjD  at any other branch as; 
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where Kij is a constant defined as; 
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3.1 Consistency of the formulation 

 
 Equation 15 is examined for simple limiting conditions, for the case of 
closed emitters, i.e. Xij = 0. Substituting for Yij  Eq.15 becomes: 
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which is a relation obtained independently in a previous work [11,1]. 
  
For a single pipe without drawoffs, i = j = 1 equation 15 leads to 
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This result is a well-established relation for a single pipeline [1]. 
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3.2 Solution Procedure 
 

 It is suggested here to minimize Eq.10 in two steps, first by replacing each 
pipeline with an equivalent one without any emitters and the equivalent optimal 
diameters can be obtained by solving Eq.17. The solution gives a minimum 
cost function, Ze, for the equivalent system. It is actually the minimum cost of 
an equivalent network, which combines the pipe cost and energy cost as: 
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Splitting the cost equation, Eq.10, into two similar parts the cost of pipes Z1 
and that of energy Z2 then 
 
 2121 ZZZZ ee +=+  (20) 
 
 The constant aie (Eq.19) is a false cost index introduced here to enable 
extending the equivalent solution to represent the actual network. The value of 
aie is assumed and Eq.19 is solved for the equivalent diameter of each branch 

o
ieD . Equating Ze2 and Z2 gives the diameter of the first segment of each branch 
o
iD 1 . New value of aie is then determined by employing Ze1 = Z1, using the 

obtained diameters o
iD 1 . Comparing the new aie’s with the assumed values. If 

equal or within a reasonable accuracy, the solution is terminated else the new 
aie’s are used to determine new values for o

ijD , and the iteration continues. 
Once the final o

iD 1 s are determined for each branch, the optimal diameters for 
the other pipes are calculated from; 
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and the flow rate through each branch is determined from Eq.8. 
 

4. Case Studies 
 
 The first numerical case study is a 3-branch system with 3 draw-off points 
along each branch. The emitters are located at unequal distances as seen in 
Table 1.and the extraction ratios are shown in Fig.2:  
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          Figure 2: Schematic diagram for case 1. 

 
 
Table 1. Data for case study No.1 
 

Pipe No. 1 2 3 4 5 6 7 8 9 10 11 12 

Length, m 50 150 50 100 200 100 50 50 100 100 100 100 

 
 For a total rate of 0.03 m3/s the calculated optimum diameters and flow rate 
within each pipe are given in Table 2. For this example the minimum cost 
function Z is obtained for a constant friction factor f = 0.02, r = 0.15 and ce = 
.07 SR/kWh. 
 
Table 2. Optimum diameters and flow rates, for case study No. 1 
 
Pipe No. 1 2 3 4 5 6 7 8 9 10 11 12 
Optimum 
diameter, m 0.11 0.093 .081 0.065 0.14 0.12 0.08 0.06 0.14 0.13 0.12 0.11 

Qi×103 m3/s 7.07 4.24 2.83 1.41 11.15 7.8 2.2 1.11 11.8 9.4 7.1 4.7* 
 
* The calculated flow rates add up to .0302 m3/s that presents 0.7% deviation in the mass balance as 

rounding off error. 
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 The second numerical case study considers a portion of the irrigation 
network at King Abdulaziz University campus, Fig.3, for which all pipelines 
are PVC, of 0.076 m diameter. The input flow rate to the system is 0.1505 
m3/s, the system is treated as a two parallel branch system with 13 emitters on 
each line. The dimensions and the percentage ratio of bleeding for the two 
branches are given in Table 3 along with the results. The optimum diameters 
and the flow rate through each segment are presented. The calculated optimum 
pipe diameter is a guide to select the closest standard pipe size as seen under 
the standard matching, Table. 3. This case is just to illustrate the applicability 
of the analysis and software to handle a system with a large number of draw-
off points.  
 
 

 
Figure 3: Schematic diagram for case 2. 

 
 The third case study considers a single pipeline 5.8 km long, with large flow 
rate 1 m3/s distributing water at 3 stations, X=0.3 at each extraction point, 
Fig.4. 
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Table 3: PVC two parallel lines,  portion of KAAU irrigation network 
 

 Pipe No. 
Length 

m 
X Optimum 

Do, m 

Standard 
matching 

D 

1 
2 
3 
4 
5 

2 
10 

19.8 
4 
9 

.06 

.06 

.18 

.06 

.06 

.34 

.33 

.32 

.30 

.29 

1¼” 

6 
7 
8 

17.8 
2.4 

36.8 

.09 

.05 
.072 

.28 

.27 

.26 
1¼” 

9 
10 
11 

13.6 
25.6 
4.2 

.07 

.08 
.118 

.24 

.23 

.21 
1” 

B
ra

nc
h 

N
o.

1 

12 
13 

20.8 
3.6 

.073 
0.027 

.15 

.10 
½” 

14 
15 
16 
17 

12 
6 

30 
3 

.04 

.05 
.044 

.4 

.31 

.31 

.30 

.30 

1¼” 

18 
19 
20 
21 
22 

10.4 
17 
6.2 
13 
20 

.048 
.04 
.05 
.05 
.05 

.24 

.23 

.22 

.21 

.20 

1” 

23 
24 
25 

15 
1.2 

13.6 

.06 

.07 

.05 

.19 

.17 

.14 
¾” 

B
ra

nc
h 

N
o.

2 

26 8 0.048 .11 ½” 
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Figure 4: A Single pipeline with three drawoff points. 
 
 
 For this case study the cost index for steel pipes is taken as 400 SR/m-m, 
and a constant friction factor f=0.02 and 0.14 fixed charge rate. The cost of 
electricity is variable 0.07 and 0.15 SR/kWh and for 8000 hours annual 
working hours, the constant C varies between 1120 to 2186 respectively. The 
optimum diameters for minimum annual cost are presented in Table 4.  The 
results in Table 4 show that the increase in the cost of electricity is associated 
with increase in pipe diameters but the relation is not linear. Doubling the unit 
cost of electricity increases the annual expenses from 246,182 SR to 275,223 
SR, the difference is only 11.8%. The flow average velocity inside each pipe 
segment is  calculated  to  check  that  it is not increasing  the  practical  limit of  
3 m/s for water.  
 
Table 4:  Optimum diameters and flow velocities for a single pipeline with three 

bleeding points 
Ce = 0.07 SR/kWh 0.15 SR/kWh Pipe 

No. 
Length 

Km 
X 

Do m V m/s Do m V m/s 

1 
2 
3 
4 

1.0 
2.5 
1.4 
.9 

.3 

.3 

.3 

.73 

.65 

.53 

.34 

2.4 
2.1 

1.75 
1.1 

.82 

.73 
.6 

.38 

1.90 
1.69 
1.40 
.88 

 
 The presented 3 examples demonstrate the validity and potential of the 
present analysis. 
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6. Conclusion  
 
 A cost function is developed for a system that comprises a single pumping 
station and n branching pipeline, with arbitrary draw-off points along each 
pipeline. The model is based on the cost of piping system, pump and the energy 
consumed to operate the system. The least annual cost principle is employed to 
determine the optimal diameters of all piping segments. For minimum annual 
cost the formulation leads to a set of coupled nonlinear algebraic equations, 
which are solved iteratively. The starting values for the proposed solution 
routine are obtained by solving an equivalent piping system without any 
emitters. The optimal diameters are then corrected to satisfy a cost index 
parameter that relates both the actual and equivalent systems. The model is 
employed for a simple 3 parallel pipelines with 12 emitters. A second case 
study is also presented which considers part of the irrigation network at King 
Abdulaziz University Campus. A third case is a single 5.8 km pipeline 
distributing water at 3 stations. 
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Nomenclature 

 
a cost index for pipes ($/m-m) 
b exponent for pipe price 
ce cost of energy ($/kWh) 
Ce annual cost of energy ($/y) 
Co operation cost ($/y) 
Cp cost of pipes ($) 
Cm cost of pipes installation ($) 
Cpp cost of pumps and piping system ($) 
D pipe diameter, m 
f friction factor 
g gravitational acceleration, m/s2 
G constant = 2g (π/4)2  
H pressure head, m water 
Hf losses due to friction and pipe fittings 
l length of pipe, m 
m number of emitters for a single pipeline 
n number of parallel pipelines 
P pressure (N/m2) 
Q flow rate (m3/s) 
r fixed charges rate 
Y parameter defined by Eq.5 m/(m3/s)2  
w Specific weight, kg/m3 
Z total annual cost ($/y) 
 

Subscripts 
e equivalent 
i integer, pipe number 
j integer for length between emitters 
o at outlet 
p pumps 
t total 

Superscripts 
o optimum 
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min minumum 
 

Greek letters 
η efficiency 
τ operation time for one year (h) 
 

 
 تحديد الأقطار المثلى لشبكة أنابيب ذات نقاط توزيع

 
 محمد بدر حبيب االله  و جلال محمد زكى

 جامعة الملك عبد العزيز،  كلية الهندسة
  المملكة العربية السعودية-جدة 

 
 

تقدم هذه الدراسة دالة السعر لنظام مكون من مضخة         : المستخلص  
دالة . قاط التوزيع   تغذى مجموعة من المواسير عليها مجموعة من ن       

السعر تتكون من جزأين ؛ الأول يشمل السعر الابتدائي للمواسـير           
والمضخات بينما يشتمل الجزء الثاني على تكاليف استهلاك الطاقـة          

عند تطبيق قاعدة اقل قيمة  لدالـة السـعر تنـتج            . وتشغيل النظام 
  الغير خطية المتداخلة و التي استخدم لحلهـا تمجموعة من المعادلا  
: تم تطبيق الحـل لـثلاث أمثلـة مختلفـة           . أحد الطرق التكرارية  

 نقطة توزيع والمثال    12لمجموعة متفرعة من ثلاث مواسير عليها       
الثانى لجزء من شبكة مواسير رى الحدائق بجامعـة الملـك عبـد             

والمثال الثالث لحط أنابيب بطـول      .   نقطة توزيع  26العزيز عليها   
فى جميع الحالات تم تحديـد      .  توزيع  كيلومتر عليه ثلاث نقاط    5و8

 . أقطار المواسير التي تعطى اقل تكلفة سنوية
 

 


