

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Strong convergence theorems for a semigroup of asymptotically nonexpansive mappings

H. Zegeye^a, N. Shahzad^{b,*}, O.A. Daman^a

ARTICLE INFO

Article history: Received 18 February 2011 Received in revised form 6 May 2011 Accepted 6 May 2011

Keywords:

Nonexpansive mappings
Asymptotically nonexpansive mappings
Fixed points
Strongly continuous semigroup of
nonexpansive mappings
Strongly continuous semigroup of
asymptotically nonexpansive mappings

ABSTRACT

Let K be a nonempty closed convex subset of a real Banach space E. Let $\mathcal{T}:=\{T(t):t\geq 0\}$ be a strongly continuous semigroup of asymptotically nonexpansive mappings from K into K with a sequence $\{L_t\}\subset [1,\infty)$. Suppose $F(\mathcal{T})\neq\emptyset$. Then, for a given $u\in K$ there exists a sequence $\{u_n\}\subset K$ such that $u_n=(1-\alpha_n)\frac{1}{t_n}\int_0^{t_n}T(s)u_nds+\alpha_nu$, for $n\in\mathbb{N}$, where $t_n\in R^+$, $\{\alpha_n\}\subset (0,1)$ and $\{L_t\}$ satisfy certain conditions. Suppose, in addition, that E is reflexive strictly convex with a Gâteaux differentiable norm. Then, the sequence $\{u_n\}$ converges strongly to a point of $F(\mathcal{T})$. Furthermore, an *explicit* sequence $\{x_n\}$ which converges strongly to a fixed point of \mathcal{T} is proved.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let K be a closed convex subset of a Hilbert space H. One parameter family $\mathcal{T} := \{T(t) : t \ge 0\}$, denotes the set of nonnegative real numbers, is said to be *strongly continuous semigroup of Lipschitzian mappings* from K into K if the following conditions are satisfied:

- (1) T(0)x = x for all $x \in K$;
- (2) T(s+t) = T(s)T(t) for all s, t > 0;
- (3) for each t>0, there exists a bounded measurable function $L_t:(0,\infty)\to [0,\infty)$ such that $\|T(t)x-T(t)y\|\le L_t\|x-y\|, x,y\in K;$
- (4) for each $x \in K$, the mapping T(.)x from $\mathbb{R}^+ = [0, \infty]$ into K is continuous.

A strongly continuous semigroup of Lipschitzian mappings \mathcal{T} is called *strongly continuous semigroup of nonexpansive mappings* if $L_t = 1$ for all t > 0, and *strongly continuous semigroup of asymptotically nonexpansive* if $\limsup_{t \to \infty} L_t \le 1$. Note that for asymptotically nonexpansive semigroup \mathcal{T} , we can always assume that the Lipschitzian constant $\{L_t\}_{t>0}$ are such that $L_t \ge 1$ for each t > 0, L_t is non-increasing in t, and $\lim_{t \to \infty} L_t = 1$; otherwise we replace L_t , for each t > 0, with $L_t := \max\{\sup_{s \ge t} L_s, 1\}$. \mathcal{T} is said to have a fixed point if there exists $x_0 \in K$ such that $T(t)x_0 = x_0$, for all $t \ge 0$. We denote by $F(\mathcal{T})$, the set of fixed points of \mathcal{T} , i.e., $F(\mathcal{T}) := \bigcap_{t \ge 0} F(T(t))$.

A continuous operator of semigroup $\mathcal{T} := \{T(t) : t \ge 0\}$, is said to be *uniformly asymptotically regular* on K if for all $h \ge 0$ and any bounded subset C of K, $\lim_{t \to \infty} \sup_{x \in C} \|T(h)T(t)x - T(t)x\| = 0$.

^a Department of Mathematics, University of Botswana, Pvt. Bag 00704, Gaborone, Botswana

^b Department of Mathematics, King Abdul Aziz University, P.O. B. 80203, Jeddah 21589, Saudi Arabia

^{*} Corresponding author.

E-mail addresses: habtuzh@yahoo.com (H. Zegeye), nshahzad@kau.edu.sa, naseer_shahzad@hotmail.com (N. Shahzad), damanoa@mopipi.ub.bw (O.A. Daman).