

Part 1. Spectrophotometric determination of trace mercury (II) in dental-unit wastewater and fertilizer samples using the novel reagent 6-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1,3-thiazin-4(3H)-one and the dual-wavelength β -correction spectrophotometry

A. Hamza^a, A.S. Bashammakh^b, A.A. Al-Sibaai^{a,b,c}, H.M. Al-Saidi^c, M.S. El-Shahawi^{a,*}

^a Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia ^b The Centre of Excellence in Environmental Studies, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia ^c University College, Department of Chemistry, Umm AL, Oura University, Makkab, Saudi Arabia

^c University College, Department of Chemistry, Umm AL-Qura University, Makkah, Saudi Arabia

A R T I C L E I N F O

Article history: Received 15 October 2009 Received in revised form 13 January 2010 Accepted 14 January 2010 Available online 21 January 2010

Keywords: Mercury (II) β -Correction spectrophotometry

Water Fertilizer ICP-MS

ABSTRACT

A simple and low cost method was developed and validated for the determination of trace mercury (II) ions in dental-unit wastewater and fertilizer samples. The method was based upon the reaction of mercury (II) ions with the novel reagent 6-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2thioxo-2H-1,3-thiazin-4(3H)-one, the formed complex shows an absorption maximum at 505 nm (λ_{max}) in Britton–Robinson (B–R) buffer (pH 4–6).The corrected absorbance of the formed complex at λ_{max} was obtained employing β -correction spectrophotometric method. Beer's–Lambert law and Ringbom's plots of the colored Hg–reagent complex were obeyed in the concentration range of 0.2–2.0 and 0.32–0.96 µg mL⁻¹ mercury (II) ions, respectively with a relative standard deviation in the range of 2.1±1.3%. The limits of detection (LOD) and quantification (LOQ) of the procedure were 0.026 and 0.086 µg mL⁻¹ Hg²⁺, respectively. The proposed method was applied for the analysis of mercury (II) in dental-unit wastewater and fertilizer samples. The validation of the method was tested by comparison with the data obtained by the inductively coupled plasma-mass spectrometry (ICP-MS). The statistical treatment of data in terms of Student's *t*-tests and variance ratio *f*-tests has revealed no significance differences.

© 2010 Elsevier B.V. All rights reserved.